当前位置:主页 > 最新课程1 >

最新课程1

机器学习驱动的智能化电池管理技术与应用

时间:2024-07-19 16:49 点击次数:
一、培训背景:
在人工智能与电池管理技术融合的背景下,电池科技的研究和应用正迅速发展,创新解决方案层出不穷。从电池性能的精确评估到复杂电池系统的智能监控,从数据驱动的故障诊断到电池寿命的预测优化,人工智能技术正以其强大的数据处理能力和模式识别优势,推动电池管理领域的技术进步。据最新研究动态,目前在电池管理领域的人工智能应用主要集中在以下几个方面:
 
1. 状态估计:包括电池的荷电状态(SOC)和健康状态(SOH)的实时监测与估计,使用机器学习算法提高估计的准确性。
 
2. 寿命预测:通过分析电池的使用历史和性能数据,预测电池的剩余使用寿命(RUL),帮助制定维护和更换计划。
 
3. 故障诊断与异常检测:利用深度学习等技术识别电池的异常行为,实现故障早期诊断和预警。
 
4. 充电策略优化:使用智能算法优化电池的充电过程,提高充电效率,减少能量损耗。
 
5. 电池匹配与均衡:在电池组中,使用人工智能技术进行电池单体的匹配和均衡控制,确保电池组性能的一致性和稳定性。
 
6. 自适应控制:开发自适应控制算法,使电池管理系统能够根据实时数据和环境变化自动调整其操作策略。
 
7. 环境影响评估:评估不同使用条件和环境因素对电池性能和寿命的影响,使用人工智能进行模拟和优化。
 
8. 电池回收与二次利用:使用人工智能评估退役电池的状态,优化电池的回收和再利用流程。
 
为促进科研人员、工程师及产业界人士对智能算法在光子学设计领域应用技术的掌握,特举办“机器学习驱动的智能化电池管理技术与应用”专题培训会议,本次培训会议主办方为北京软研国际信息技术研究院,承办方互动派(北京)教育科技有限公司,具体相关事宜通知如下:
 
二、培训目标:
1. 综合性:课程覆盖了电池管理技术的多个方面,包括电池的工作原理、关键性能指标及评估、电池热失控预警、异常检测、以及充电策略优化等。数据驱动角度强调了数据集的重要性,并在多个应用中展示了如何利用数据集来训练和验证模型。算法框架上详细阐述了不同应用场景下的算法框架,帮助学员构建清晰的技术实现路径。结果验证上在多个章节中提到了结果的估计和泛化性验证,确保学员能够理解模型的准确性和适用性。
2. 技术深度和实际应用:深入探讨人工智能和机器学习在电池管理中的应用,如SOC(荷电状态)估计、SOH(健康状态)估计、寿命预测等,并提供多个应用案例,如基于迁移学习的SOC估计、基于模型误差谱的SOH估计方法等,有助于学员理解理论与实践的结合。
3. 方法论:介绍了多种人工智能在电池管理中的具体应用方法,如基于数据-物理融合模型的荷电状态估计、基于深度学习的电池Q-V曲线预测等。
4. 技术前沿:涵盖了当前人工智能在电池管理领域的最新研究成果,如基于转移注意力机制的电池剩余寿命预测方法。
 
三、报名费用(含报名费、培训费、资料费): 
每人¥4900元(含报名费、培训费、资料费)
2024年8月9日前报名缴费可享受200元早鸟价优惠;
参加过我单位举办的其它课程的老学员,可享受额外200优惠;
费用提供用于报销的正规机打发票及盖有公章的纸质通知文件;北京中科万维智能科技有限公司作为本次会议会务合作单位,负责注册费用收取和开具发票,可开具会议费发票和发送会议邀请函;
 
四、增值服务: 
1、凡报名学员将获得本次培训电子课件及案例模型文件;
2、培训结束可获得本次所学专题课程全部无限次回放视频;
3、参加培训并通过试的学员,可以获得:主办方北京软研国际信息技术研究院培训中心颁发的《智能化电池管理技术与应用》专业技能结业证书;
 
五、联系方式:
【注】1、开课前一周会务组统一通知;开课前一天会将直播链接及上机账号发至您邮箱或微信。如未收到请及时电话咨询!

Copyright © 2002-2020 互动派(北京)教育科技有限公司 版权所有 备案号:京ICP备16066145号

QQ客服 服务热线 微信客服 公众号

扫一扫,添加QQ客服

服务热线

010-56245524

扫一扫,添加微信客服

扫一扫,关注公众号